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A mathematical result often used in economic theory, is Berge’s Maximum Theorem. This 
establishes continuity of the value function and upper semicontinuity of the maximizers’ 
correspondence. However, the theorem requires the return function and the feasible correspon- 
dence to be continuous. For some applications in economics, it is difficult to justify these strong 
continuity requirements but quite possible to explain some ‘convex structures’ to the problem. 
The main purpose of this paper is to present a maximum theorem under convex structures but 
with weaker continuity requirements. We then illustrate the usefulness of our results by an 
application to a problem encountered in the theory of optimal intertemporal allocation. 

1. Introduction 

The following situation is often encountered in many problems of econ- 
omic theory. There is a set X of possible states. For each state x in X, there 
is a set g(x) [a subset of Y-j of actions available to an agent. The agent gets a 
return f(y) if he can pick action y in I! The agent is then interested, given x 
in X, in maximizing f(y) subject to the restriction that y be in g(x). Under 
this set-up, one is often interested in knowing whether the maximized u&e of 
the function, f, is continuous on X; also, whether the correspondence of 
maximizing actions has some continuity properties. The maximum theorem of 
Berge (1963) provides suitable answers to this set of questions. There are 
several generalizations and useful expositions of this result (with economic 
applications in mind) in Debreu (1959, 1969), Sonnenschein (1971), Hilden- 
brand (1974) and Walker (1979). [For a survey of results (from a different 
perspective), and for references to the rather large literature on the subject, 
see Bank et al. (1983)]. 

The maximum theorem of Berge requires that the return function be 
continuous, and that the feasible actions’ correspondence, g, be also conti- 
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nuous. For some applications in economics, it is difficult to justify these 
strong continuity requirements, but quite possible to justify some ‘convex 
structure’ to the problem [such as X and Y are convex, f is concave, and g 
has a convex graph]. The main purpose of this paper is to present a 
maximum theorem under weaker continuity requirements on f and g, but 
with the type of convex structure we mentioned above. We then illustrate the 
usefulness of our result by applying it to a problem encountered in the 
theory of optimal intertemporal allocation. 

2. Preliminaries 

2.1. Notation 

Let R” be an m-dimensional real space. The norm on R” is the Euclidean 
one denoted by )1+/. For any x,y in R”, Xzy(X>>y) means Xi zyi(Xi>yJ for 
i=l ,...,m; x>y means xly and x#y. The set {x in R”: x20) is denoted 
by R”,. 

Let N be the set of non-negative integers (0, 42,. . .}. Let S= {x = {xS}r: x, is 
in R” for all s in N}. Thus, S is the space of sequences of vectors in R”. The 
metric, d, on S is defined as follows. For x, y in S, 

d(x,y)=s~o W”){IIxs-YsII/[1+ bs-Y$>. 

It is known that S with the above metric defines a metric linear space and 
that d(xr,x)+O iff I~x~--xSl~-+O for all s in N. 

For any set Y let P(Y) denote the collection of all subsets of Y A 
correspondence, g, from a set X to a set Y is then a mapping from X to 
P(Y), and we write g: X+P( Y) to denote this fact. 

2.2. Definitions 

In the rest of the paper, X will be a subset of R”, and Y a subset of a 
metric linear space, Y, with metric 1.1. 

Let x belong to X. (i) A correspondence g: X-P(Y) is lower hemi- 
continuous at X iff ‘I(x”-- -11 x + 0 as n+oo, and jj in g(X)’ imply that ‘there is an 
integer n, and a sequence y” in g(x”) for nz ?i, such that Iy”-jl+O as n+co’. 
(ii) A correspondence g:X+P( Y) is upper hemicontinuous at X if g(X) is non- 
empty and compact, and ‘11x”--xIJ+o, y” in g(x”) for all n’ imply that ‘there is 
a converging subsequence of {y”}:, whose limit belongs to g(X)‘. (iii) The 
correspondence g:X+P(Y) is continuous at X if it is both upper and lower 
hemicontinuous at X. 

The correspondence g:X+P( Y) is lower (upper) hemicontinuous on X, if it 
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is lower (upper) hemicontinuous at each point of X. It is continuous on A if 
it is both upper and lower hemicontinuous on X. 

The graph of the correspondence g:X+P( Y) is the set {(x, y) in X x Y:y is 
in g(x)}. The correspondence g:X -+P( Y) is monotone increasing if x’ 2.x 
implies g(x’) Ig(x). 

A function, f: Y-R is said to be upper semicontinuous at jj in Y if 
‘ly”-_Yl-+O as n+co’ implies ‘lim,,, sup f(y”) 5 f(y)‘. It is upper semiconti- 
nuous on Y if it is upper semicontinuous at each y in Y A function, f’: Y+R 
is lower semicontinuous at jj (on Y) if C-f] is upper semicontinuous at j (on 
Y). It is continuous at j (on Y) if it is both upper and lower semicontinuous 
at jj (on Y). 

3. Maximum theorems 

The following type of problem is often encountered in many branches of 
economic theory. There is a set X of possible states. For each state x in X, 
there is a set g(x) c Y of actions available to an agent. The agent has a return 
function, f, which tells him the return f(y) that he will get, if he can pick the 
action y in Y The agent is then interested in maximizing f(y) subject to the 
restriction that y be in g(x). 

Now, given some properties of X, E: g and f, one is often interested in 
knowing whether the maximum value, M(x), of the function f, defined by 
M(x) =max{f(y):y is in g(x)} is a continuous function on X. One is also 
interested in knowing whether the correspondence of maximizers, defined by 
h(x)= {y:y is in g(x), and f(y)= M(x)} h as some continuity properties. The 
answers to these questions are provided by the so-called ‘Maximum 
theorem’. 

We first state here, for ready reference, the Maximum Theorem of Berge 
(1963, p. 116). 

Theorem 1 (Berge). Zf f: Y+R is a continuous function, and g:X-+P(Y) is a 
continuous correspondence, then the maximum value, M, is continuous on X, 
and the correspondence of maximizers, h, is upper hemicontinuous on X. 

We are primarily interested in establishing maximum theorems in which 
weaker continuity requirements are imposed on the function f; and the 
correspondence, g. Instead, the framework has a ‘convex structure’ that can 
be justified in some applications in economics. To elaborate, the set of states, 
X, will be a convex subset of R”; the set of actions will be a convex subset Y 
of the metric linear space, Y, with metric 1.1. The feasible correspondence of 
actions, g:X+P(Y), will have a convex graph, and the return function, 
f: Y-+R will be concave. On the other hand, f is only assumed to be upper 
semicontinuous on x and g is only assumed to be an upper hemicontinuous 
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correspondence on X. However, it is not possible to establish a maximum 
theorem with the above structure as the folowing example shows. 

Example I. Let 

X={(xi,xJ in R::II( xl,xJIJI 1); Y= {(yl,y2) in R:: ~~(Y~~Y~)~~sJZ>. 

Let G:X+P(Y) be defined by G(x,,xJ={(y,,yJ in R::(yl,yd$(L1) 
for h,xJ=U,O) and (yl,yz)S(O, 1) for (x1,x2)#(1,0)}. Let g:R:-+P(R:) 
be defined by & 1, 4 = {(Y 1, YA in R::(x1,x2, y1,y2) is in the convex hull of 
the graph of G}. Since X is convex, g is non-empty only on X, and so g 
maps X to P(Y). Let f: Y+ R be defined by f(y,, y2) = y, + y,. 

It is easy to check that g is upper hemicontinuous on X. Furthermore, the 
graph of g is convex, and f is continuous and concave on Y However, h is 
not upper hemicontinuous and M is not continuous on X. To establish this, 
note that if x is in X with IIxII=I then x=~~=,,$x’ for x’ in X, A,20 for 
r=l , . . . , n, and I:= 1 1, = 1. This implies x’ = x whenever A,> 0. [This is the 
assertion that points on the unit circle cannot be expressed as a convex 
combination of points in it]. Now, pick a sequence (x;,x”,)= 
([n’- 1)/n]+, l/n) for n= 1,2,.. . . Then (x:,x”,) converges to (LO) as n+co. 
For (y;,y;) in g(x;,x;), we must have (y;,y;) in G(x;,x”,), and so (~7,~;)s 
(0,l) for all n. So (y;, y;) in h(xl, yq) implies (yl, y;) =(0, l), given the 
definition off: Similarly, (yr, y2) in h(1, 0) implies (yl, y2) =(l, 1). Clearly then, 
h is not upper hemicontinuous at (LO), and M is not continuous at (LO). 

Example 1 shows that we need some additional structure (besides con- 
vexity) to prove a maximum theorem under weaker continuity requirements. 
One such set of restrictions is conveyed in the condition stated below. 

Condition A. g is monotone increasing, and 0 E X c R”,. 

First, we state and prove a maximum theorem under Condition A. Then, 
we remark briefly on some alternative restrictions under which similar 
maximum theorems can be proved. 

Theorem 2. Let X be a non-empty, convex subset of R”, and Y be a 
non-empty, convex subset of Y Let g be an upper hemicontinuous correspon- 
dence from X to Y with a convex graph. Let f: Y-R be upper semicontinuous 
and concave. If Condition A is satisfied, then M is continuous and concave, and 
h is upper hemicontinuous and convex-valued on X. 

Proof Since g(x) is non-empty and compact for each x in X, and f is upper 
semicontinuous, so M and h are well defined on X. Further, since f is 
concave and g has a convex graph, h is convex-valued, and M is concave. By 
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the upper semicontinuity of f and the upper hemicontinuity of g, M is upper 
semicontinuous on X [Berge (1963, p. 116, Theorem 2)]. 

To establish continuity of M, we then have to show that M is lower 
semicontinuous. Note first that g monotone increasing implies that M is 
monotone increasing; that is, for x’zx, M(x’)& M(x). The monotonicity 
and concavity of M, together with the hypothesis that 0~Xc R”,, implies 
that M is lower semicontinuous. To see this, let {x”};=~ be any sequence 
converging to X in X. For any E >O, let J in (0,l) be such that 
AM(Z) +( 1 -I)M(O)z M(Z) --E. Since {x”}~=~ is a sequence converging to X 
there is some integer ti, such that x”z1X, for all n2.n. From the mono- 
tonicity and concavity of M, M(x”) 2 M(h) 2 AM(i) + (1 - l)M(O). From the 
choice of 2, we can therefore conclude that M(x”) 2 M(x)-&, for all nzri. 
Hence lim inf,, _ m M(x”) 2 M(Z) --E. Since E >O was arbitrarily chosen, it must 
be the case that liminf,,, M(x”)&M(Z). 

To demonstrate the upper hemicontinuity of h, define H(x)=(y in 
Y:f(y)- M(x)lO}. From the continuity of M(x) and the upper semiconti- 
nuity of f(y), it follows that H has a closed graph. So, h(x) =H(x) rig(x)) is 
upper hemicontinuous [by Berge (1963, p. 112, Theorem 7)]. 0 

Remark 1. (i) In Theorem 2, instead of assuming that 0 is in X and 
Xc R”,, one can also assume that for every x in X, Xc R”, there is x’ in X, 
such that x’<<x. The conclusions remain unaltered and the proof is almost 
identical [see McKenzie (1986)]. 
(ii) If the return function, f, is defined on X x Y then a maximum theorem 
like Theorem 2 can be proved, if f is upper semicontinuous and concave on 
X x Y and monotone non-decreasing in x, for all y in Y 

Remark 2. (i) In Theorem 2, suppose we replace Condition A by the 
following condition: 

Condition B. X is a locally simplicial set. 

Then the conclusions of the theorem continue to hold. This can be seen by 
noting that [following Rockafellar (1970, p. 84)] a concave function is lower 
semicontinuous on a locally simplicial set, and then applying this fact to the 
function, M, in our proof. [The definition of a ‘locally simplicial set’, as well 
as the above result, can be found in Dutta and Mitra (1985).] Furthermore, 
this result can be easily generalized to the case where f is defined on Xx Y 
provided f is upper semicontinuous and concave on X x I: 
(ii) The class of locally simplicial sets includes simplices, polytopes and 
polyhedral sets in R”. Hence a number of standard parameter sets encoun- 
tered in economic theory belong to this class. 
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Remark 3. Example 1 demonstrated that graph g being convex does not 
imply that g is lower hemicontinuous. However, under the convex structure 
of Theorem 2 and either Condition A or Condition B, g can in fact be shown 
to be lower hemicontinuous. Theorem 1 continues to be inapplicable, since f 
may not be continuous. Theorem 2 and Remark 2 demonstrate that the 
available sufficient conditions for continuity of g can be used together with 
the concavity and upper semicontinuity of f to ensure the continuity and 
concavity of M, and the convex-valuedness and upper hemicontinuity of h. 

A relevant question that one may ask is whether the continuity of M and 
upper hemicontinuity of h can be proved if concavity of f is weakened to 
quasi-concavity in Theorem 2. The following example shows that this 
extension is not possible. 

Example 2. Let X=[O,l]=Y, g(x)=[l-x,1] for x in X; f(y)=+ for y>O, 
and f(y) = 1 for y=O. Then, all the hypotheses of Theorem 2 are satisfied 
[and, in fact, both Conditions A and B hold], except that f is quasi-concave, 
but not concave. Note that M(x) = f for all Osx < 1; M(1) = 1. Hence, for 
x”=l-(l/n), n=l,2 )...) h(x) contains 1 but h(1) does not contain 1. So h is 
not upper hemicontinuous, and M is not continuous. 

Another question of interest in whether the correspondence of maximizers, 
h, can be shown to be lower hemicontinuous. It is easy to construct an 
example which shows that this is not possible even when all the hypotheses 
of Theorems 1 and 2 (and even Condition B) are satisfied [see Dutta and 
Mitra (1985)]. 

In some instances, a weaker maximality notion is used, namely that of E- 
maximality. An s-maximizer correspondence can be defined as h,(x) = {y in 
Y:y is in g(x) and f(y)> M(x)--&). Under the hypotheses of Theorem 1, one 
can show, following Majumdar (1983) that for any .s>O, h,(x) is lower 
hemicontinuous. It can also be proved that for .s>O, h,(x) is lower 
hemicontinuous, when the hypotheses of Theorem 2 [or those of Remark 21 
are satisfied. 

4. An application to optimal intertemporal allocation theory 

In this section, we provide an application of Theorem 2 to a problem in 
optimal intertemporal allocation theory. We show that the ‘value function’ 
associated with the typical dynamic optimization problem is continuous, and 
the ‘optimal policy correspondence’ is upper semicontinuous. 

A standard framework of optimal intertemporal allocation can be des- 
cribed in the following way. The economy E consists of a triple (Sz, u, 6), 
where Sz c R”, x R”, is the technology set, u:Q+R is the utility function, and 
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0~6 < 1 is a discount factor. [For details, see Khan and Mitra (1986).] The 
following assumptions are maintained on E: 

A.Z. (i) (0,O) is in 52, and (ii) if (0, y) is in 52, then y =O. 

A.2. 52 is closed and convex. 

A.3. If (x, y) is in 52, and x’ >=x, Osy’sy, then (x’,y’) is in Sz, and 

4x’, Y’) 2 4% Y). 

A.4. There is B>O, such that llxll >/I, and (x, y) in D implies that llyll5 [[XII. 

AS. u is upper semicontinuous and concave in G?. 

A.6. There is TV in R, such that (x, y) in R implies u(x,y) 2~. 

A program from k in R”, is a sequence {k(t)},“=, such that k(O) = E and 
(k(t), k(t+ 1)) is in s2 for tz0. A program {&(t))$, from k is an optimal 
program from E if C,“=oG’u(kt), k(t + 1))~~,“=,6’u(&t), l(t + 1)) for every 
program {k(t)},“=, from k. It is a stationary optimal program if it is an optimal 
program, and l(t) = E for t 2 0. A stationary optimal stock k is an element of 
R”,, such that {Q,“=, is a stationary optimal program. It is non-trivial if 
u(E, E) > u(0, 0). 

Define for each k in R”,, B(k)=max( lk/,j?}. It is well known that if 
{k(t)},ZO is a program from k, then Ilk(t)/ sB(k) for t 20, and furthermore, 
by AS, A.6, x,“=,,G’u(k(t), k(t+ 1)) is absolutely convergent. It can be shown 
that for each k in R”,, there exists an optimal program {&(t)}g,, from k. 
Define the value function, K from R”, to R by V(k)= 
max[xl”=oG’u(k(t), k(t+ l)):{k(t)},“=, is a program from k]. Then, if {c(t)}: ,, 
is an optimal program from k, we have V(k) =~tm,O 6%(&t), &t + 1)). We 
can also define the correspondence Il/(k)={{k(t)},“=,: {k(t)},“=, is an optimal 
program from k). 

Proposition 1. V is continuous and concave on R”,, and $ is upper semiconti- 
nuous and convex-valued on R”,. 

Proof: For k in R”,, define g(k)={{k(t)},“,,:{k(t)},“=, is a program from k}. 
Also define S’= {{k(t)},“=,:k(O) is in R”,, (k(t), k(t+ 1)) is in Q, for tzO>. Then, 
clearly, g is a correspondence from R “+ to S’cS. By the convexity of 52, the 
graph of g is convex. To see that g(k) is upper hemicontinuous, note firstly 
that g(k) ~4, for all k in R”,. Next, let {k”(0)}~CO be a sequence of elements 
of R”, converging to k(0) in R”,. Then, beyond some integer fi, [[k”(O)/5 
B(k(O))+l. Let k”={k”(t)},“,, be in g(k”(0)) and so for nzfi, 
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~~k”(C)~~SB(~(O))+ 1, for all t in N. Hence, by the Cantor diagonal process one 
can obtain a subsequence, {k”‘}, of (k”), and &={~(t)}~=,, in s’, such that for 
each t in N, Ilk”‘(t)-k(t))ll+O, as n+co, and so d(k”‘,k)+O as n’+oo. Since Sz 
is closed, {k(r)}~O is in g(k(0)). This shows that g(k) is compact for all k in 
R”,, and g is upper hemicontinuous on R”,. From the free-disposal assump- 
tion A.3, g is monotone increasing. 

For k= {k(t)},” in s’, define f(k)=x,“=,G’u(k(t), k(t+ 1)). Then by the 
concavity of u, f is concave on s’. Also, f is upper semicontinuous on s’. To 
see this, let {k”) be a sequence in s’, n = 1,. . . , such that d(k”, k)+O as n-+co. 
Then, for each ~20, [(k”(t)-k(t))ll+O as n+co. By the upper semicontinuity 
of u, we have 

limsupu(k”(t), k”(t+ l))su(k(t), k(t+ l)), 
n+oo 

for each t 2 0. Thus 

li;+yp f(k”) = lim sup,, m ctm,O G’u(k”(t), k”(t + 1)) 

5 ‘&EL 0 6’ lim sup,,_, m u(k”(t), k”(t + 1)) 

$+&z(+(k((t), k((t+ l))=f(&!, 

noting that each expression in this string of inequalities is well-defined [by 
arguments similar to those used to prove the existence of an optimal 
program]. 

Now applying Theorem 2, V is continuous and concave on Ry , and I,$ is 
upper hemicontinuous and convex-valued on R”,. 0 

The following result is well known as the ‘principle of optimality’ in 
dynamic programming, and is, therefore, stated without proof. 

Lemma 1. (a) 1. {k(t))% is a program from E, then V(k( t)) 2 u(k(t), 

(b) 

(4 

(4 

k(t+ 1))+6V(k(t+ 1)) for ~20. 
Zf (k(t)),“,0 is an optimal program from 17, then V(k(t))=u(k(t), 
k(t+ 1))+6V(k(t+ 1)) for ~20. 
Zf { k(t)}zO is a program from I?, and for t 2 0, V(k(t)) = u(k(t), k(t + 1)) + 
6V(k(t+ l)), then {k(t)}zO is an optimal program from E. 
For k in Ry, V(k)=max(,,,.,r, ,{u(k,k’)+dV(k’)}. 

We now define the optimal policy correspondence ,u, by p(k)= {k’ in 
R”, :(k, k’) E 52, u(k, k’) + 6 V(k’) = V(k)} for k in R”,. Then p is a correspondence 
from R”, to R”,. For every k in R”,, the set of elements (k, k’) in 52 is 
non-empty (by A.l, A.3), bounded [since llk’ll~B(k), as noted above], and 
closed (by A.2). Furthermore, u is upper semicontinuous on a (by AS), and 
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V is continuous on R”, (by Proposition 1). So the correspondence, p, is 
non-empty on R”,. 

Proposition 2. The optimal policy correspondence, p, is upper hemicontinuous 
and convex-valued on R”,. 

Proof. If {k(t)},“=, is in e(k), then k(1) is in p(k), by Lemma 1. Also, if k(1) is 
in p(k), then picking k(t + 1) as any element of p(k(t)) for t 2 1, we know by 
Lemma 1 that (k(t)},“=, is in Ii/(k). Thus, p is upper hemicontinuous and 
convex-valued on R”,, since $ is upper hemicontinuous and convex-valued 
on R”,. 0 

Remark 4. (i) The optimal policy correspondence, p(k), provides the set of 
states that it is optimal to go to, given that the initial state is k. The upper 
hemicontinuity of this correspondence is proved by Sutherland (1970) under 
the assumption that the utility function, U, is continuous on 52. Since u is best 
interpreted as a reduced utility function (obtained by solving a maximization 
problem) it is possible to justify the assumption that u is upper semiconti- 
nuous, but difficult to justify that u is continuous on Q [on this point see 
Peleg (1973), Khan and Mitra (1986), McKenzie (1986) and Dutta and Mitra 
(1986)]. 
(ii) Another application of our result is provided in Khan and Mitra (1986) 
in proving the existence of a non-trivial stationary optimal stock by applying 
the Kakutani fixed-point theorem. There, the correspondence, whose fixed- 
point turns out to be a non-trivial stationary optimal stock, can be shown to 
be upper hemicontinuous and convex-valued by applying a result like 
Theorem 2. For details, the reader is referred to Khan and Mitra (1986) or 
McKenzie (1986). 
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